Fundamental Concepts: Sedimentation

Ann Kenimer
Texas A & M University

University Curriculum Development for Decentralized Wastewater Management
NDWRCDP Disclaimer

This work was supported by the National Decentralized Water Resources Capacity Development Project (NDWRCDP) with funding provided by the U.S. Environmental Protection Agency through a Cooperative Agreement (EPA No. CR827881-01-0) with Washington University in St. Louis. These materials have not been reviewed by the U.S. Environmental Protection Agency. These materials have been reviewed by representatives of the NDWRCDP. The contents of these materials do not necessarily reflect the views and policies of the NDWRCDP, Washington University, or the U.S. Environmental Protection Agency, nor does the mention of trade names or commercial products constitute their endorsement or recommendation for use.
These materials are the collective effort of individuals from academic, regulatory, and private sectors of the onsite/decentralized wastewater industry. These materials have been peer-reviewed and represent the current state of knowledge/science in this field. They were developed through a series of writing and review meetings with the goal of formulating a consensus on the materials presented. These materials do not necessarily reflect the views and policies of University of Arkansas, and/or the Consortium of Institutes for Decentralized Wastewater Treatment (CIDWT). The mention of trade names or commercial products does not constitute an endorsement or recommendation for use from these individuals or entities, nor does it constitute criticism for similar ones not mentioned.
Sedimentation

Sedimentation is the gravitational accumulation of solids at the bottom of a fluid (air or water)
Types of Settling

Four types of sedimentation:

- Discrete settling
- Flocculant settling
- Hindered settling
- Compression
Examples of Settling Types

Discrete

Flocculant

Hindered
Types of Sedimentation

- In **discrete settling**, individual particles settle independently.
- It occurs when there is a relatively low solids concentration.
Types of Sedimentation

- In flocculant settling, individual particles stick together into clumps called flocs.
- This occurs when there is a greater solids concentration and chemical or biological reactions alter particle surfaces to enhance attachment.
Types of Sedimentation

- In hindered settling, particle concentration is great enough to inhibit water movement.
- Water must move in spaces between particles.
Types of Sedimentation

- Compression settling occurs when particles settle by compressing the mass below.
Sedimentation Rate

- **Stoke’s Law**
 - Used for spherical particles
 - Assumes no fluid mixing, so usually will not work for gasses

\[V_p = \frac{(\rho_p - \rho_w)d^2g}{18\mu} \]
Sedimentation Rate

\[V_p = \frac{(\rho_p - \rho_w)d^2g}{18\mu} \]

- \(V_p \) = particle settling velocity \((m/s\) or \(ft/s\))
- \(\rho_p \) = particle density \((kg/m^3\) or \(lb/ft^3\))
- \(\rho_w \) = fluid density \((kg/m^3\))
- \(d \) = particle diameter \((m\) or \(ft\))
- \(g \) = gravitational acceleration \((9.81 m/s^2\) or \(32.2 ft/s^2\))
- \(\mu \) = dynamic viscosity \((Ns/m^2\) or \(lbs/ft^2\))
Applications

- Stoke’s Law can be used to determine the surface area of a settling tank
 - Set the critical velocity equal to the settling velocity of the smallest particle
 - The overflow rate is equal to the flow rate into the tank divided by the surface area
 - Setting the overflow rate equal to the critical settling velocity allows time to capture smallest particles of interest
Applications

\[\text{OFR} = v_c = \frac{Q}{A} \]

- **OFR** = over flow rate \((m/s\text{ or } ft/s)\)
- **\(v_c\)** = critical settling velocity \((m/s\text{ or } ft/s)\)
- **\(Q\)** = the flow rate into the basin \((m^3/s\text{ or cfs})\)
- **\(A\)** = the surface area of the basin \((m^2\text{ or ft}^2)\)